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Abstract In this paper, a negative velocity feedback
is added to a dynamical system which is represented
by second-order nonlinear differential equations hav-
ing quadratic coupling, quadratic, and cubic nonlinear-
ities. The system describes the vibration of the sys-
tem subjected to multi-parametric excitation forces.
The method of multiple scale perturbation technique is
applied to obtain the response equation near the simul-
taneous internal and super-harmonic resonance case of
this system. The stability to the system is investigated
applying frequency response equations. The numeri-
cal solution and the effects of some parameters on the
vibrating system are investigated and reported. The
simulation results are achieved using MATLAB 7.0
program. A comparison is made with the available pub-
lished work.
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List of Symbols

x1 and x2 The two mode amplitudes
ai (i = 1, 2) Steady-state amplitudes of the

system
D0 and D1 Differential operators
T0 and T1 Fast and slow time scales,

respectively (Tn = εnt), n =
0, 1

t Time
ω1, ω2 The natural angular frequencies

of the modes
μi (i = 1, 2) The linear damping coefficients
α1, β1 The cubic nonlinear coefficients
α2, β2 The quadratic nonlinear coeffi-

cients
α3 The coupling quadratic nonlinear

coefficient
Fj , Pj ( j = 1, The excitation force amplitudes
2, . . . , N) of the modes
Gi (i = 1, 2) Positive constants (gains)
� The excitation frequency
ε A small perturbation parameter
ẋi , ẍi (i = 1, 2) The derivatives with respect to t
λ Eigenvalue
σi (i = 1, 2) The detuning parameters
An0(n = 1, 2) Functions of T1

γi (i = 1, 2) Phase of the motion
θi (i = 1, 2) Phase of the motion
pi , qi (i = 1, 2) Real parameters
ri (i = 1, 2, . . . , 4) Constants
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1 Introduction

The vibration of a dynamical system motion can be
reduced applying active controller or passive controller.
The study of two-degree-of-freedom systems has not
received much attention. The response of a two-degree-
of-freedom system with quadratic coupling under a
modulated amplitude sinusoidal excitation is inves-
tigated for different system motion [1,2]. Nonlinear
dynamics has many technical applications [2–4]. The
stability properties, bifurcations, jump phenomena in
systems, such as off-shore structures, railroad wheel
sets, and aircraft are appeared in Refs. [5–10].

Kim et al. [11] investigated the resonances that
arise from the synergistic effects of multi-frequency
parametric excitation and single-frequency external
excitation in a single-degree-of-freedom plate with a
cubic nonlinearity, subjected to combine parametric
and external excitations. Roy and Chatterjee [12] stud-
ied small vibrations of cantilever beams contacting a
rigid surface, where the non-contacting length varies
dynamically. It was indicated that the phase relation-
ships of the external and each parametric excitation
source have significant effect on the resulting response
amplitude. El-Badawy and Nayfeh [13] used two sim-
ple control laws based on linear velocity and cubic
velocity feedback to suppress the high-amplitude vibra-
tions of a structural dynamic model of the twin-tail
assembly of an F-15 fighter when subjected to primary
resonance excitations. Eissa and Amer [14] controlled
the vibration of a second-order system simulating the
first mode of a cantilever beam subjected to primary and
sub-harmonic resonance using cubic velocity feedback.

EL-Bassiouny [15] made an investigation into the
control of the vibration of the crankshaft in internal-
combustion engines subjected to both external and
parametric excitations via an absorber having both
quadratic and cubic stiffness nonlinearities. Belhaq
and Houssni [16] investigated the control of chaos of
the one-degree-of-freedom system with both quadratic
and cubic nonlinearities subjected to combine paramet-
ric and external excitations. Several control methods
leading to suppression of chaos have been presented.
Sorokin and Ershov [17] applied active control to the
resonant vibrations of a rectangular sandwich plate per-
formed by the parametric stiffness modulation. Pai et
al. [18] designed new nonlinear vibration absorbers
using higher order internal resonances and saturation
phenomena to suppress the steady-state vibrations of a

linear cantilevered skew aluminum plate subjected to
single external force. Higher order internal resonances
are introduced using quadratic, cubic, and/or quartic
terms to couple the controller with the plate. The dis-
placement and velocity feedback signals are consid-
ered. Yaman and Sen [19] studied the problem of sup-
pressing the vibrations of a nonlinear system with a can-
tilever beam of varying orientation subjected to para-
metric and direct excitation. They applied the cubic
velocity feedback to the system to reduce the ampli-
tudes of the system.

Lei et al. [20] applied an active control technique to
coordinate a kind of two parametrically excited chaotic
system. Oueini and Nayfeh [21] modeled the dynamics
of the first mode of a cantilever beam with a second-
order nonlinear ordinary differential equation subjected
to a principal parametric excitation, and a control law
based on cubic velocity feedback is introduced. Pai
and Schulz [22] studied the control of the first mode
vibration of a stainless steel beam through negative
velocity feedback to the dynamic system. Amer and
El-Sayed [23] investigated the nonlinear dynamics of a
two-degree-of-freedom vibration system with nonlin-
ear absorber when subjected to multi-external forces
at primary and internal resonance with ratio 1:3. They
reported that the steady-state amplitude of the main sys-
tem is reduced to 2.5 % of its maximum value. Eissa
et al. [24] and Amer et al. [25,26] studied the nonlin-
ear dynamics of two-degree-of-freedom vibrating sys-
tem using multiple time scale perturbation up to the
second-order approximation. They reported that how
the active vibration control is effective at different res-
onance cases of the system.

In the present paper, second-order nonlinear dif-
ferential equations of a dynamical system having
quadratic coupling, quadratic, and cubic nonlineari-
ties subjected to multi-parametric excitation forces is
considered and solved. The method of multiple time
scale perturbation [27] is applied to solve the nonlin-
ear differential equations describing the controlled sys-
tem up to second-order approximations. In this system,
we added active controller via negative linear velocity
feedback to the system. The behavior of the system
is studied applying Runge–Kutta fourth-order method.
The stability of the system is investigated applying both
frequency response equations and phase-plane method.
The resonance cases and effects of different parameters
of the system are studied numerically. A comparison is
made with the available published work.
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2 Mathematical investigation

In this paper, we consider a nonlinear dynamical system
subjected to multi-parametric excitations. The system
can be written as

ẍ1 + ω2
1x1 + 2εμ1 ẋ1 + εα1x3

1 + εα2x2
1 + εα3x1x2

= εx1

N∑

j=1

Fj cos j�t + R1, (1)

ẍ2 + ω2
2x2 + 2εμ2 ẋ2 + εβ1x3

2 + εβ2x2
2

= εx2

N∑

j=1

Pj cos j�t + R2, (2)

where R1 = −εG1 ẋ1 and R2 = −εG2 ẋ2 are the con-
trol forces which added to the modes of the system.

Approximate solutions of nonlinear Eqs. (1) and
(2) are obtained applying the multiple scales method,
assuming x1 and x2 in the form

x1(ε; t) = x10(T0, T1) + εx11(T0, T1) + O(ε2), (3)

x2(ε; t) = x20(T0, T1) + εx21(T0, T1) + O(ε2), (4)

where Tn = εnt (n = 0, 1).
The derivatives will be in the form

d

dt
= D0 + εD1 + · · · , (5)

d2

dt2 = D2
0 + 2εD0 D1 + · · · , (6)

where Dn = ∂
∂Tn

, n = 0, 1, 2
Substituting from Eqs. (3) and (4) into Eqs. (1) and

(2) and equating the same power of ε, we have

ε0: (D2
0 +ω2

1)x10 =0, (7)

(D2
0 +ω2

2)x20 =0, (8)

ε1: (D2
0 +ω2

1)x11 =−2D0 D1x10−2μ1 D0x10−α1x3
10

−α2x2
10−α3x10x20+x10

×
N∑

j=1

Fj cos j�t−G1(D0x10), (9)

(D2
0 +ω2

2)x21 =−2D0 D1x20−2μ2 D0x20−β1x3
20

−β2x2
20+x20

N∑

j=1

Pj cos j�t

− G2(D0x20). (10)

The solutions of Eqs. (7) and (8) can be written in
the form

x10(T0, T1) = A10(T1) exp(iω1T0) + cc, (11)

x20(T0, T1) = A20(T1) exp(iω2T0) + cc, (12)

where A10 and A20 are complex functions in T1 and cc
denotes the complex conjugate functions. Substituting
Eqs. (11) and (12) into Eqs. (9) and (10), we get

(D2
0 +ω2

1)x11 =−2iω1[(D1 A10) exp(iω1T0)]
− 2iω1μ1[A10 exp(iω1T0)]−α1[A3

10 exp(3iω1T0)

+ 3A2
10 A10 exp(iω1T0)]−α2[A2

10 exp(2iω1T0)

+ A10 A10]−α3[A10 A20 exp i(ω1+ω2)T0

+ A10 A20 exp i(ω1 − ω2)T0]

+ A10

2

N∑

j=1

Fj exp i(ω1+ j�)T0

− iω1G1 A10 exp(iω1T0)+cc, (13)

(D2
0 +ω2

2)x21 =−2iω2[(D1 A20) exp(iω2T0)]
− 2iω2μ2[(A20) exp(iω2T0)]−β1[A3

20 exp(3iω2T0)

+ 3A2
20 A20 exp(iω2T0)]−β2[A2

20 exp(2iω2T0)

+ A20 A20]+ A20

2

N∑

j=1

Pj exp i(ω2+ j�)T0

− iω2G2 A20 exp(iω2T0)+cc. (14)

Eliminating the secular terms of Eqs. (13) and (14)
to get bounded solutions, then the general solution of
the resulting equations obtained as

x11 = A11 exp (iω1T0)+ α1

8ω2
1

[
A3

10 exp (3iω1T0)
]

+ α2

3ω2
1

[
A2

10 exp(2iω1T0)
]− α3

(ω2
1 −(ω1+ω2)2)

× [
A10 A20 exp i(ω1+ω2)T0

]− α3

(ω2
1 −(ω1−ω2)2)

× [
A10 A20 exp i(ω1−ω2)T0

]+ A10

2

3∑

j=1

× Fj
1

(ω2
1 −(ω1+ j�)2)

[
exp(i(ω1+ j�)T0)

]+cc,

(15)

x21 = A21 exp (iω2T0)+ β1

8ω2
2

[
A3

20 exp (3iω2T0)
]

+ β2

3ω2
2

[
A2

20 exp(2iω2T0)
]+ A20

2

3∑

j=1

× Pj
1

(ω2
2 −(ω2+ j�)2)

[
exp(i(ω2+ j�)T0)

]+cc.

(16)

From Eqs. (3) and (4), the deduced resonance cases
are:

(i) Primary resonance: � = ωn, n = 1, 2
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(ii) Sub-harmonic resonance: � = 2ωn, n = 1, 2
(iii) Super-harmonic resonance: � = 2

3ωn, n = 1, 2
(iv) Internal resonance: ω2 = rω1, r = 1, 2

(iiv) Simultaneous resonance: Any combination of the
above resonance cases is considered as simulta-
neous resonance.

3 Stability analysis

The stability of the controlled system is investigated
at the worst resonance case (confirmed numerically),
which is the simultaneous internal and super-harmonic
resonance case where ω2 ∼= ω1, 3� ∼= 2ω2.

Using the resonance conditions ω2 ∼= ω1 + εσ1 and
3� ∼= 2ω2 +εσ2, then 3� = 2ω1 +2εσ1 +εσ2, where
σ1 and σ2 are called the detuning parameters. Elimi-
nating the secular terms from the first approximations
of Eqs. (13) and (14), we get the following:

−2iω1 D1 A10−2iω1μ1 A10−3α1 A2
10 A10

− iω1G1 A10+ A10 F3

2
exp i(2σ1+σ2)T1 =0, (17)

−2iω2 D1 A20−2iω2μ2 A20−3β1 A2
20 A20

− iω2G2 A20+ A20 P3

2
exp(iσ2T1)=0. (18)

Using the polar form

An0 = 1

2
an exp(iγn), n = 1, 2, (19)

where a1,2 and γ1,2 are the steady-state amplitudes and
phases of the motions, respectively. Substituting from
Eq. (19) into Eqs. (17) and (18) and equating imaginary
and real parts, we obtain

a′
1 = −μ1a1 − 1

2
G1a1 + F3

4ω1
a1 sin θ1, (20)

1

2
a1θ

′
1 = − 3α1

8ω1
a3

1 + F3

4ω1
a1 cos θ1, (21)

a′
2 = −μ2a2 − 1

2
G2a2 + P3

4ω2
a2 sin θ2, (22)

1

2
a2θ

′
2 = 1

2
a2σ2 − 3β1

8ω2
a3

2 + P3

4ω2
a2 cos θ2, (23)

where θ1 = σ1T1 + σ2T1 − 2γ1 and θ2 = σ2T1 − 2γ2,
then θ ′

1 = σ1 + σ2 − 2γ ′
1 and θ ′

2 = σ2 − 2γ ′
2.

For steady-state solutions, we put a′
n = γ ′

n = 0, n =
1, 2 and the periodic solution at the fixed points corre-
sponding to Eqs. (20)–(23) is given by

−μ1 − 1

2
G1 + F3

4ω1
sin θ1 = 0 (24)

1

2
(σ1 + σ2) − 3α1

8ω1
a2

1 + F3

4ω1
cos θ1 = 0, (25)

−μ2 − 1

2
G2 + P3

4ω2
sin θ2 = 0 (26)

1

2
σ2 − 3β1

8ω2
a2

2 + P3

4ω2
cos θ2 = 0, (27)

From Eqs. (24)–(27), we have the following cases: (i)
a1 �= 0, a2 = 0, (ii) a2 �= 0, a1 = 0, and (iii)
a1 �= 0, a2 �= 0.

For the practical (general) case (a1 �= 0, a2 �= 0),
Squaring Eqs. (24) and (25), then adding the squared
results together, similar to Eqs. (26) and (27) gives the
following frequency response equations:

σ 2
1 +

[
2σ2− 3α1

2ω1
a2

1]σ1+[4μ2
1+G2

1+4μ1G1+σ 2
2

+ 9α2
1

16ω2
1

a4
1 − 3α1

2ω1
σ2a2

1 − 1

4ω2
1

F2
3

]
=0, (28)

σ 2
2 +

[
− 3β1

2ω2
a2

2]σ2 + [4μ2
2 + G2

2 + 4μ2G2

+ 9β2
1

16ω2
2

a4
2 − 1

4ω2
2

P2
3

]
= 0. (29)

To determine the stability of the fixed point solutions
of Eqs. (24)–(27), we introduce the following forms:

An0 = 1

2
(pn − iqn) exp(iσnT1), n = 1, 2, (30)

where p1,2, q1,2 are real coefficients. The linearized
form of Eqs. (17) and (18) are written as the following:

−2iω1 A′
10 − 2iω1μ1 A10 − iω1G1 A10

+ A10 F3

2
exp i(2σ1 + σ2)T1 = 0, (31)

−2iω2 A′
20 − 2iω2μ2 A20 − iω2G2 A20

+ A20 P3

2
exp i(σ2)T1 = 0. (32)

Substituting from Eq. (30) into Eqs. (31) and (32) and
equating the imaginary and real parts of Eqs. (31) and
(32), we have

p′
1 + (μ1 + G1/2)p1 + (σ1)q1 = 0, (33)

q ′
1 + (−σ1)p1 + (μ1 + G1/2)q1 = 0, (34)

p′
2 + (μ2 + G2/2)p2 + (σ2)q2 = 0, (35)

q ′
2 + (−σ2)p2 + (μ2 + G2/2)q2 = 0. (36)
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Fig. 1 Non-resonant time response solution at selected values: μ1 = 0.5, μ2 = 0.6, α1 = 2.4, α2 = 3.5, α3 = 1.0, β1 = 1.4, β2 =
3.5, ω1 = 1.24, ω2 = 1.52, � = 3.23, F1 = P1 = 1.4, F2 = P2 = 1.5, and F3 = P3 = 2.25

Table 1 Summary of the
worst resonance cases

Resonance cases With controller Without controller Figure no.

% x1 % x2 %x 1 % x2

Non-resonant
ω1 �= ω2 �=
�1 �= �2

100 100 – – 1

Primary resonance
� = ω1

110 80 30, Ea = 34 20, Ea = 15

Sub-harmonic resonance
� ∼= 2ω2

90 115 20, Ea = 10 30, Ea = 38

Internal resonance
ω1 ∼= ω2

110 110 35, Ea = 40 40, Ea = 45

Simultaneous primary
resonance ω2 ∼= ω1,
3� ∼= 2ω2

180 200 10, Ea = 100 5, Ea = 200 2

The stability of a particular fixed point with respect
to a proportional to exp(λT1) is determined by zeros of
the characteristic equation:

∣∣∣∣∣∣∣∣

(λ + μ1 + 1
2 G1) (σ1) 0 0

−(σ1) (λ + μ1 + 1
2 G1) 0 0

0 0 (λ + μ2 + 1
2 G2) (σ2)

0 0 −(σ2) (λ + μ2 + 1
2 G2)

∣∣∣∣∣∣∣∣
= 0. (37)

To analyze the stability of the non-trivial solution,
one uses Eq. (37) to obtain

λ4 + r1λ
3 + r2λ

2 + r3λ + r4 = 0, (38)

where

r1 = 2(μ1+μ2)+G1+G2,

r2 = μ2
1+μ2

2+σ 2
1 +σ 2

2 +μ1G1+μ2G2+4μ1μ2

+ 2μ1G2+2μ2G1+G1G2+ 1

4
(G2

1+G2
2),

r3 = 2(μ2
1μ2+μ2

2μ1+μ2σ
2
1 +μ1σ

2
2 )+μ2

1G2

+μ2
2G1+ 1

2
(μ2G2

1+μ1G2
2)+

1

4
(G2

1G2

+ G2
2G1)+2μ1μ2(G1+G2)+G1G2(μ1+μ2)

+ G1σ
2
2 +G2σ

2
1 ,

r4 = μ2
1μ

2
2+ 1

4
(μ2

1G2
2+μ2

2G2
1+μ2G2

1G2+μ1G2
2G1

+ G2
1σ

2
2 +G2

2σ
2
1 )+μ2

1μ2G2+μ2
2μ1G1

+μ2
1σ

2
2 +μ2

2σ
2
1 +μ1G1σ

2
2 +μ2G2σ

2
1

+μ1μ2G1G2+(G2
1G2

2/16)+σ 2
1 σ 2

2 .

According to the Routh–Hurwitz criterion, the initial
equilibrium solution (p1, q1, p2, q2) = (0, 0, 0, 0)

is stable if the following conditions: r1 > 0, r1r2 −r3

> 0, r3(r1r2 −r3)−r2
1 r4 > 0, and r4 > 0 are satis-
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Fig. 2 Simultaneous internal and super-harmonic resonance case, ω2 ∼= ω1 and 3� ∼= 2ω2. a System without controller. b System
with negative linear velocity feedback controller

fied, while these conditions are not satisfied, the initial
equilibrium solution is unstable and bifurcations may
occur.

4 Results and discussion

The Rung–Kutta fourth-order method has been applied
to determine the numerical solution of the given system.
Figure 1 shows the non-resonant system behavior. It
can be seen that the maximum steady-state amplitude
of x1 and x2 are about 65 and 60 % of excitation forces
F1 and P1, respectively, this case can be regarded as a
basic case.

4.1 Resonance cases

Table 1 shows the results of some of the worst res-
onance conditions. It describes the effect of the dif-
ferent worst resonance cases of the system before and
after controller. The worst resonance case of the system
is the simultaneous internal and super-harmonic reso-
nance case where ω2 ∼= ω1 and 3� ∼= 2ω2. Figure 2

shows the worst resonance case behavior of the system
without controller and with controller. We recognized
that the amplitudes of the worst resonance of the sys-
tem eliminate the vibration. In this table, we applied
active control (negative linear velocity feedback) to
all resonance cases and we found that the amplitudes
of the system are eliminated. The effectiveness of the
controller is determined from the relation (Ea = steady-
state amplitude of the system before controller/steady-
state amplitude of the system after controller), as shown
in Table 1.

4.2 Effects of different parameters

The frequency response equations (28) and (29) are
nonlinear algebraic equations of a1 against σ1 and
a2 against σ2. These equations solved numerically as
shown in Figs. 3 and 4. Some of these figures are bent
to the right and the others bent to the left. This bending
leads to multi-valued solutions and jump phenomenon.
We discuss the practical case, a1 �= 0 and a2 �= 0
as the following: Fig. 3, shows that the steady-state
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Fig. 3 Theoretical
frequency response curves
μ1 = 0.5, α1 = 2.4, ω1 =
0.34, F3 = 2.25, and
G1 = 1.4
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amplitude a1 of the system is monotonic increasing to
the linear natural frequency of roll mode ω1, the exci-
tation coefficient of first mode F3 and decreasing in
the nonlinear parameter α1, the linear damping coef-
ficient μ1, and the gain G1. Also, for the nonlinear
parameter α1 > 0 the steady-state amplitude a1 is
shifted to the right indicating hardening-type nonlin-
earity, but for α1 < 0 the steady-state amplitude a1 is
shifted to the left indicating softening-type nonlinear-
ity. Furthermore, the steady-state amplitude a2 of the

system is monotonic increasing to the linear natural fre-
quency of pitch mode ω2, the excitation coefficient of
second mode P3 and decreasing in the nonlinear para-
meter β1, the linear damping coefficient μ2, and the
gain G2. Also, for the nonlinear parameter β1 > 0 the
steady-state amplitude a2 is shifted to the right indi-
cating hardening-type nonlinearity, but for β1 < 0
the steady-state amplitude a2 is shifted to the left
indicating softening-type nonlinearity as appeared in
Fig. 4.
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Fig. 4 Theoretical
frequency response curves
μ2 = 0.6, β1 = 1.4, ω2 =
0.28, P3 = 2.25, and
G2 = 1.75
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4.3 Vibration control

Figure 5 shows the effects of the gains on the modes
of the system at the simultaneous internal and super-
harmonic resonance case where ω2 ∼= ω1 and 3� ∼=
2ω2 We found that the amplitudes of the system are
monotonic decreasing functions of the gains G1 and

G2. The saturation occurs when G1 > 0.9 for the mode
amplitude x1 and G1 > 0.15 for the mode amplitude
x2, G2 ≥ 0.6 for the mode amplitude x1 and G2 ≥ 0.3
for the mode amplitude x2. From all the results, we have
a threshold value for the damping coefficients of the
worst case of the system. The threshold value occurs at
0.65 for two amplitudes x1 and x2 as regarded in Fig. 6.
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Fig. 5 Effects of the gains

Fig. 6 Threshold values of damping coefficients at the worst resonance case of the system

4.4 Comparison with available published work

In comparison with the previous work [14] controlled
the vibration of a cantilever beam subjected to primary
and sub-harmonic resonance using cubic velocity feed-
back. While in Ref. [21] introduced a control law based
on cubic velocity feedback of the first mode of a can-
tilever beam with a second-order nonlinear ordinary

differential equation subjected to a principal paramet-
ric excitation.

However, in this paper, the new is controlling the
nonlinear two-degree-of-freedom model of a dynam-
ical system, having quadratic coupling, quadratic,
and cubic nonlinearities, subjected to multi-parametric
excitation forces via a negative feedback velocity. This
controller is the best one for the worst resonance
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case as it reduces the vibration dramatically. Multi-
ple time scale perturbation method is useful to deter-
mine approximate solutions for the coupled differen-
tial equations describing the system up to second-order
approximation.

5 Conclusions

The vibrations of a two–degree-of-freedom nonlin-
ear differential equations having quadratic coupling,
quadratic, and cubic nonlinearities, subjected to multi-
parametric excitation forces controlled via a negative
feedback velocity. Multiple time scale perturbation
method is useful to determine approximate solutions
for the coupled differential equations describing the
system up to second-order approximation. The stabil-
ity of the system is considered by both the frequency
response equations and the phase-plane technique. The
effects of the different parameters of the system are
studied numerically. From the above study, the follow-
ing may be concluded:

1. The worst resonance case of the system is the
simultaneous internal and super-harmonic reso-
nance case where ω2 ∼= ω1 and 3� ∼= 2ω2.

2. Negative linear velocity feedback active controller
is the best one for the worst resonance case as it
reduces the vibration dramatically.

3. The effectiveness of the controller at the reported
worst resonance case are about Ea = 100 for the
mode amplitude x1 and Ea = 200 for the mode
amplitude x2, respectively.

4. The steady-state amplitudes of both modes are
monotonic increasing functions in the linear nat-
ural frequencies ω1, ω2, the excitation coefficient
modes F3, P3, respectively, decreasing in the non-
linear parameters α1, β1, the linear damping coef-
ficients μ1, μ2, and the gains G1, G2.

5. Also, for the nonlinear parameters α1, β1 > 0
steady-state amplitudes of both modes are shifted
to the right indicating hardening-type nonlinearity,
but for α1, β1 < 0 steady-state amplitudes of both
modes are shifted to the left indicating softening-
type nonlinearity.

6. The saturation occurs when G1 > 0.9 for the mode
amplitude x1 and G1 > 0.15 for the mode ampli-
tude x2, G2 ≥ 0.6 for the mode amplitude x1 and
G2 ≥ 0.3 for the mode amplitude x2.

7. The threshold value for the damping coefficients of
the worst case of the system occurs at 0.65.

Acknowledgments The author would like to thank the review-
ers for their valuable comments and suggestions for improving
the quality of this paper.

References

1. Haddow, A.G., Barr, A.D., Mook, D.T.: Theoretical and
experimental study of modal interaction in a two-degree-
of-freedom structure. J. Sound Vibr. 97, 451–473 (1984)

2. Nayfeh, A.H., Mook, D.T.: Non-linear Oscillations. Wiley,
New York (1979)

3. Mosekilde, E.: Topics in Nonlinear Dynamics. World Sci-
entific, Singapore (1996)

4. Thomson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and
Chaos. Wiley, New York (1986)

5. Caroll, J.V., Mehra, P.K.: Bifurcation analysis of nonlinear
aircraft dynamics. J. Guidance 5, 529–536 (1982)

6. Knudsen, C., Slivsgaard, E., Rose, M., True, H., Feldberg,
R.: Dynamics of a model of a railroad wheelset. Nonlinear
Dyn. 6, 215–236 (1994)

7. Russell, R.C.H.: A study of the movement of moored ships
subjected to wave action. Proc. Inst. Civ. Eng. 12, 379–398
(1959)

8. Shy, A.: Prediction of jump phenomena in roll-coupled
Maneuvers of airplanes. J. Aircr. 14, 375–382 (1977)

9. Sorensen, C.B., Mosekilde, E., Granazy, P.: Nonlinear
dynamics of a thrust vectored aircraft. Phys. Scripta 67, 176–
183 (1996)

10. Thomson, J.M.T.: Complex dynamics of compliant off-
shore structures. Proc. R. Soc. Lond. A 387, 407–427 (1983)

11. Kim, C.H., Lee, C.W., Perkins, N.C.: Nonlinear vibration
of sheet metal plates under interacting parametric and exter-
nal excitation during manufacturing. ASME J. Vibr. Acoust.
127(1), 36–43 (2005)

12. Roy, A., Chatterjee, A.: Vibrations of a beam in variable con-
tact with a flat surface. ASME J. Vibr. Acoust. 131, 041010
(2009)

13. El-Badawy, A.A., Nayfeh, A.H.: Control of a directly
excited structural dynamic model of F-15 tail section. J.
Frankl. Inst. 338, 33–147 (2001)

14. Eissa, M., Amer, Y.A.: Vibration control of a cantilever beam
subject to both external and parametric excitation. J. Appl.
Math. Comput. 152, 611–619 (2004)

15. EL-Bassiouny, A.F.: Vibration and chaos control of non-
linear torsional vibrating systems. Phys. A 366, 167–186
(2006)

16. Belhaq, M., Houssni, M.: Suppression of chaos in aver-
aged oscillator driven by external and parametric excitations.
Chaos Solitons Fractals 11, 1237–1246 (2000)

17. Sorokin, S.V., Ershov, O.A.: Forced and free vibrations of
rectangular sandwich plates with parametric stiffness mod-
ulation. J. Sound Vib. 259(1), 119–143 (2003)

18. Pai, P.F., Rommel, B., Schulz, M.J.: Non-linear vibration
absorbers using higher order internal resonances. J. Sound
Vib. 234(5), 799–817 (2000)

123



www.manaraa.com

Active vibration control of a dynamical system 423

19. Yaman, M., Sen, S.: Vibration control of a cantilever beam
of varying orientation. Int. J. Solids Struct. 44, 1210–1220
(2007)

20. Lei, Y., Xu, W., Shen, J., Fang, T.: Global synchronization
of two parametrically excited systems using active control.
Chaos Solitons Fractals 28, 428–436 (2006)

21. Oueini, S.S., Nayfeh, A.H.: Single-mode control of a can-
tilever beam under principal parametric excitation. J. Sound
Vib. 224(1), 33–47 (1999)

22. Pai, P.F., Schulz, M.J.: A refined nonlinear vibration
absorber. Int. J. Mech. Sci. 42, 537–560 (2000)

23. Amer, Y.A., EL-Sayed, A.T.: Vibration suppression of non-
linear system via non-linear absorber. Commun. Nonlinear
Sci. Numer. Simul. 13, 948–1963 (2008)

24. Eissa, M., Amer, Y.A., Bauomy, H.S.: Active control of an
aircraft tail subject to harmonic excitation. Acta Mech. Sin.
23(4), 451–462 (2007)

25. Amer, Y.A., Bauomy, H.S.: Vibration reduction in a 2DOF
twin tail system to parametric excitations. Commun. Non-
linear Sci. Numer. Simul. 14(1), 560–573 (2009)

26. Amer, Y.A., Bauomy, H.S., Sayed, M.: Vibration suppres-
sion in a twin-tail system to parametric and external excita-
tions. Comput. Math. Appl. 58, 1947–1964 (2009)

27. Nayfeh, A.H.: Perturbation Methods. Wiley, New York
(1973)

123



www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


	Active vibration control of a dynamical system via negative linear velocity feedback
	Abstract
	1 Introduction
	2 Mathematical investigation
	3 Stability analysis
	4 Results and discussion
	4.1 Resonance cases
	4.2 Effects of different parameters
	4.3 Vibration control
	4.4 Comparison with available published work

	5 Conclusions
	Acknowledgments
	References


